The main motivation for this thesis is given by the open problems regarding the axiomatisation of quantum computational logics. This thesis will be structured as follows: in Chapter 2 we will review some basics of universal algebra and functional analysis. In Chapters 3 through 6 the fundamentals of quantum gate theory will be produced. In Chapter 7 we will introduce quasi-MV algebras, a formal study of a suitable selection of algebraic operations associated with quantum gates. In Chapter 8 quasi-MV algebras will be expanded by a unary operation hereby dubbed square root of the inverse, formalising a quantum gate which allows to induce entanglement states. In Chapter 9 we will investigate some categorial dualities for the classes of algebras introduced in Chapters 7 and 8. In Chapter 10 the discriminator variety of linear Heyting quantum computational structures, an algebraic counterpart of the strong quantum computational logic, will be considered. In Chapter 11, we will list some open problems and, at the same time, draw some tentative conclusions. Lastly, in Chapter 12 we will provide a few examples of the previously investigated structures.

Logical and algebraic structures from Quantum Computation

LEDDA, ANTONIO
2008-02-06

Abstract

The main motivation for this thesis is given by the open problems regarding the axiomatisation of quantum computational logics. This thesis will be structured as follows: in Chapter 2 we will review some basics of universal algebra and functional analysis. In Chapters 3 through 6 the fundamentals of quantum gate theory will be produced. In Chapter 7 we will introduce quasi-MV algebras, a formal study of a suitable selection of algebraic operations associated with quantum gates. In Chapter 8 quasi-MV algebras will be expanded by a unary operation hereby dubbed square root of the inverse, formalising a quantum gate which allows to induce entanglement states. In Chapter 9 we will investigate some categorial dualities for the classes of algebras introduced in Chapters 7 and 8. In Chapter 10 the discriminator variety of linear Heyting quantum computational structures, an algebraic counterpart of the strong quantum computational logic, will be considered. In Chapter 11, we will list some open problems and, at the same time, draw some tentative conclusions. Lastly, in Chapter 12 we will provide a few examples of the previously investigated structures.
6-feb-2008
xxxxxxxxxxxxx
Quantum Computation
Quasi-MV Algebras
Ledda, Antonio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/265966
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact