This thesis deals with numerical techniques for the computation of modes in electromagnetic structures with arbitrary geometry. The approach proposed in this work is based on the Finite Difference (FD) and Vector Finite Difference (VFD), which are applied to rectangular, circular, elliptical geometries, and to combination of them. The FD is applied using a 2D cartesian, polar and elliptical grid in the waveguide section. A suitable Taylor expansion of the mode function allows, either for scalar and for vector FD, to take exactly into account the boundary condition. To prevent the raising of spurious modes, the VFD approximation results in a constrained eigenvalue problem, that has been solved using a decomposition method. All approaches presented have been validated comparing the results to the analytical modes of rectangular and circular waveguide, and to known data for the elliptic case. The standard calculation of the waveguide modes using FD requires the use of two different grids, namely one for TE modes and the other for TM modes, due to the different boundary condition. It has been shown that a single grid can be used for all modes, thus allowing an effective mode-matching solution. The FD approach has been extended to waveguides (and apertures) with irregular boundaries, and therefore non-regular discretization grids. It has been shown that a suitable FD approximation of the Laplace operator is still possible. A ridged-waveguide, with trapezoidal ridges, and a rounded-ended waveguide have been considered in detail.

A generalized finite difference approach to the computation of modes

FANTI, ALESSANDRO
2012-03-20

Abstract

This thesis deals with numerical techniques for the computation of modes in electromagnetic structures with arbitrary geometry. The approach proposed in this work is based on the Finite Difference (FD) and Vector Finite Difference (VFD), which are applied to rectangular, circular, elliptical geometries, and to combination of them. The FD is applied using a 2D cartesian, polar and elliptical grid in the waveguide section. A suitable Taylor expansion of the mode function allows, either for scalar and for vector FD, to take exactly into account the boundary condition. To prevent the raising of spurious modes, the VFD approximation results in a constrained eigenvalue problem, that has been solved using a decomposition method. All approaches presented have been validated comparing the results to the analytical modes of rectangular and circular waveguide, and to known data for the elliptic case. The standard calculation of the waveguide modes using FD requires the use of two different grids, namely one for TE modes and the other for TM modes, due to the different boundary condition. It has been shown that a single grid can be used for all modes, thus allowing an effective mode-matching solution. The FD approach has been extended to waveguides (and apertures) with irregular boundaries, and therefore non-regular discretization grids. It has been shown that a suitable FD approximation of the Laplace operator is still possible. A ridged-waveguide, with trapezoidal ridges, and a rounded-ended waveguide have been considered in detail.
20-mar-2012
Differenze finite
differenze finite vettoriali
equazione di helmholtz
finite difference
helmholtz equation
modi in guida
vector finite difference
waveguide modes
File in questo prodotto:
File Dimensione Formato  
PhD_Fanti_Alessandro.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/266145
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact