The main topic ofmy research during these three years concerned biometrics and in particular the Fingerprint Liveness Detection (FLD), namely the recognition of fake fingerprints. Fingerprints spoofing is a topical issue as evidenced by the release of the latest iPhone and Samsung Galaxy models with an embedded fingerprint reader as an alternative to passwords. Several videos posted on YouTube show how to violate these devices by using fake fingerprints which demonstrated how the problemof vulnerability to spoofing constitutes a threat to the existing fingerprint recognition systems. Despite the fact that many algorithms have been proposed so far, none of them showed the ability to clearly discriminate between real and fake fingertips. In my work, after a study of the state-of-the-art I paid a special attention on the so called textural algorithms. I first used the LBP (Local Binary Pattern) algorithm and then I worked on the introduction of the LPQ (Local Phase Quantization) and the BSIF (Binarized Statistical Image Features) algorithms in the FLD field. In the last two years I worked especially on what we called the “user specific” problem. In the extracted features we noticed the presence of characteristic related not only to the liveness but also to the different users. We have been able to improve the obtained results identifying and removing, at least partially, this user specific characteristic. Since 2009 the Department of Electrical and Electronic Engineering of the University of Cagliari and theDepartment of Electrical and Computer Engineering of the ClarksonUniversity have organized the Fingerprint Liveness Detection Competition (LivDet). I have been involved in the organization of both second and third editions of the Fingerprint Liveness Detection Competition (LivDet 2011 and LivDet 2013) and I am currently involved in the acquisition of live and fake fingerprint that will be inserted in three of the LivDet 2015 datasets.

Textural features for fingerprint liveness detection

GHIANI, LUCA
2015-04-27

Abstract

The main topic ofmy research during these three years concerned biometrics and in particular the Fingerprint Liveness Detection (FLD), namely the recognition of fake fingerprints. Fingerprints spoofing is a topical issue as evidenced by the release of the latest iPhone and Samsung Galaxy models with an embedded fingerprint reader as an alternative to passwords. Several videos posted on YouTube show how to violate these devices by using fake fingerprints which demonstrated how the problemof vulnerability to spoofing constitutes a threat to the existing fingerprint recognition systems. Despite the fact that many algorithms have been proposed so far, none of them showed the ability to clearly discriminate between real and fake fingertips. In my work, after a study of the state-of-the-art I paid a special attention on the so called textural algorithms. I first used the LBP (Local Binary Pattern) algorithm and then I worked on the introduction of the LPQ (Local Phase Quantization) and the BSIF (Binarized Statistical Image Features) algorithms in the FLD field. In the last two years I worked especially on what we called the “user specific” problem. In the extracted features we noticed the presence of characteristic related not only to the liveness but also to the different users. We have been able to improve the obtained results identifying and removing, at least partially, this user specific characteristic. Since 2009 the Department of Electrical and Electronic Engineering of the University of Cagliari and theDepartment of Electrical and Computer Engineering of the ClarksonUniversity have organized the Fingerprint Liveness Detection Competition (LivDet). I have been involved in the organization of both second and third editions of the Fingerprint Liveness Detection Competition (LivDet 2011 and LivDet 2013) and I am currently involved in the acquisition of live and fake fingerprint that will be inserted in three of the LivDet 2015 datasets.
27-apr-2015
fingerprint
impronte digitali
liveness detection
riconoscimento di falsi
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_GhianiLuca.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/266594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact