β (HBB) gene, resulting in absence (β0) or deficiency (β+) of β globin chain synthesis. This genetic disorder occurs most frequently in people from Mediterranean countries, such as Italy. In particular, the data indicates that about 12.6% of the Sardinian subjects are carriers of β thalassemia and these are among the highest frequencies of thalassemia genes found in a Caucasian population. In Sardinia, the disease is generally determined by a nonsense mutation at codon 39 (E39X) of exon 2 causing the interruption of β globin synthesis. Patients homozygous with E39X mutation have a severe anemia and require frequent transfusions and iron chelation. The only definitive cure today possible for β chain hemoglobinopathies is the hematopoietic stem cells transplantation, but it is limited by availability of HLA matched donors. However, in the last few years new therapeutic approaches for this genetic disease are taking place. The correction of disease-causing mutation through the technique of Genome-Editing in patient-specific stem cells and subsequent autologous transplantation would be the ideal approach for the treatment of monogenic diseases such as β thalassemia. However, due to difficulties in obtaining sufficient homologous recombination percentages for therapeutic purposes, the aim of my PhD project is to reproduce artificially the HPFH mutations identified in non-coding regions of the β globin cluster, using the system CRISPR/Cas9 associated with NHEJ pathway. In this way, we hope to restore at therapeutic levels the expression of HBG genes and consequently the synthesis of a functional HbF in order to ameliorate the phenotype of β thalassemia.

Terapia genica della β Talassemia mediante editing del DNA

MINGOIA, MAURA
2016-03-11

Abstract

β (HBB) gene, resulting in absence (β0) or deficiency (β+) of β globin chain synthesis. This genetic disorder occurs most frequently in people from Mediterranean countries, such as Italy. In particular, the data indicates that about 12.6% of the Sardinian subjects are carriers of β thalassemia and these are among the highest frequencies of thalassemia genes found in a Caucasian population. In Sardinia, the disease is generally determined by a nonsense mutation at codon 39 (E39X) of exon 2 causing the interruption of β globin synthesis. Patients homozygous with E39X mutation have a severe anemia and require frequent transfusions and iron chelation. The only definitive cure today possible for β chain hemoglobinopathies is the hematopoietic stem cells transplantation, but it is limited by availability of HLA matched donors. However, in the last few years new therapeutic approaches for this genetic disease are taking place. The correction of disease-causing mutation through the technique of Genome-Editing in patient-specific stem cells and subsequent autologous transplantation would be the ideal approach for the treatment of monogenic diseases such as β thalassemia. However, due to difficulties in obtaining sufficient homologous recombination percentages for therapeutic purposes, the aim of my PhD project is to reproduce artificially the HPFH mutations identified in non-coding regions of the β globin cluster, using the system CRISPR/Cas9 associated with NHEJ pathway. In this way, we hope to restore at therapeutic levels the expression of HBG genes and consequently the synthesis of a functional HbF in order to ameliorate the phenotype of β thalassemia.
11-mar-2016
CRISPR/CAS9
HPFH
gene therapy
genome-editing
terapia genica
β Talassemia
β Thalassemia
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_MingoiaMaura.pdf

accesso aperto

Tipologia: Tesi di dottorato
Dimensione 3.05 MB
Formato Adobe PDF
3.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/266632
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact