Today, we are seeing an ever-increasing number of clinical notes that contain clinical results, images, and textual descriptions of patient's health state. All these data can be analyzed and employed to cater novel services that can help people and domain experts with their common healthcare tasks. However, many technologies such as Deep Learning and tools like Word Embeddings have started to be investigated only recently, and many challenges remain open when it comes to healthcare domain applications. To address these challenges, we propose the use of Deep Learning and Word Embeddings for identifying sixteen morbidity types within textual descriptions of clinical records. For this purpose, we have used a Deep Learning model based on Bidirectional Long-Short Term Memory (LSTM) layers which can exploit state-of-the-art vector representations of data such as Word Embeddings. We have employed pre-trained Word Embeddings namely GloVe and Word2Vec, and our own Word Embeddings trained on the target domain. Furthermore, we have compared the performances of the deep learning approaches against the traditional tf-idf using Support Vector Machine and Multilayer perceptron (our baselines). From the obtained results it seems that the latter outperform the combination of Deep Learning approaches using any word embeddings. Our preliminary results indicate that there are specific features that make the dataset biased in favour of traditional machine learning approaches.
TF-IDF vs word embeddings for morbidity identification in clinical notes: An initial study
Dessi D.;Kumar V.;Reforgiato Recupero D.;Riboni D.
2020-01-01
Abstract
Today, we are seeing an ever-increasing number of clinical notes that contain clinical results, images, and textual descriptions of patient's health state. All these data can be analyzed and employed to cater novel services that can help people and domain experts with their common healthcare tasks. However, many technologies such as Deep Learning and tools like Word Embeddings have started to be investigated only recently, and many challenges remain open when it comes to healthcare domain applications. To address these challenges, we propose the use of Deep Learning and Word Embeddings for identifying sixteen morbidity types within textual descriptions of clinical records. For this purpose, we have used a Deep Learning model based on Bidirectional Long-Short Term Memory (LSTM) layers which can exploit state-of-the-art vector representations of data such as Word Embeddings. We have employed pre-trained Word Embeddings namely GloVe and Word2Vec, and our own Word Embeddings trained on the target domain. Furthermore, we have compared the performances of the deep learning approaches against the traditional tf-idf using Support Vector Machine and Multilayer perceptron (our baselines). From the obtained results it seems that the latter outperform the combination of Deep Learning approaches using any word embeddings. Our preliminary results indicate that there are specific features that make the dataset biased in favour of traditional machine learning approaches.File | Dimensione | Formato | |
---|---|---|---|
paper1.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
473.33 kB
Formato
Adobe PDF
|
473.33 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.