In this work, a novel open-source dataset for noninvasive fetal electrocardiography research is presented. It is composed of 60 high-quality electrophysiological recordings acquired between the 21st and the 27th weeks of gestation. For each acquisition, whose average duration is 30.5 s, 24 unipolar abdominal leads and three bipolar thoracic leads were included, along with a maternal respiration signal collected by a thoracic resistive belt. The chosen electrodes positioning map allows reproducing up to ten setups presented in the scientific literature. Each biopotential recording was acquired synchronously with the corresponding fetal cardiac pulsed-wave Doppler (PWD) signal, to provide complete information about the fetal cardiac cycle, both from the electrical and mechanical point of view. This is the first dataset allowing the non-invasive fetal ECG analysis even in early pregnancies with a ground truth about the fetal heart activity, given by the PWD signal. For this reason, it can be used to assess fetal ECG extraction algorithms requiring multiple channels, eventually including maternal references. This dataset is being released on Physionet by the end of June 2020 and will be continuously improved in the framework of the Non-Invasive Fetal ECG Analysis (NInFEA) project of the University of Cagliari (Italy).

A Novel Tool for Non-Invasive Fetal Electrocardiography Research: the NInFEA Dataset

E. Sulas;E. Gusai;G. Baldazzi
;
L. Raffo;D. Pani
2020-01-01

Abstract

In this work, a novel open-source dataset for noninvasive fetal electrocardiography research is presented. It is composed of 60 high-quality electrophysiological recordings acquired between the 21st and the 27th weeks of gestation. For each acquisition, whose average duration is 30.5 s, 24 unipolar abdominal leads and three bipolar thoracic leads were included, along with a maternal respiration signal collected by a thoracic resistive belt. The chosen electrodes positioning map allows reproducing up to ten setups presented in the scientific literature. Each biopotential recording was acquired synchronously with the corresponding fetal cardiac pulsed-wave Doppler (PWD) signal, to provide complete information about the fetal cardiac cycle, both from the electrical and mechanical point of view. This is the first dataset allowing the non-invasive fetal ECG analysis even in early pregnancies with a ground truth about the fetal heart activity, given by the PWD signal. For this reason, it can be used to assess fetal ECG extraction algorithms requiring multiple channels, eventually including maternal references. This dataset is being released on Physionet by the end of June 2020 and will be continuously improved in the framework of the Non-Invasive Fetal ECG Analysis (NInFEA) project of the University of Cagliari (Italy).
2020
978-1-7281-1991-5
Electrodes, Pregnancy, Electrocardiography, Fetal heart, Signal to noise ratio, Tools
File in questo prodotto:
File Dimensione Formato  
09176327.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 592.02 kB
Formato Adobe PDF
592.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/299060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact