The thesis consists of three main results related to Kähler metrics on blow-ups. In the first one, we prove that the blow-up C ̃^2 of C^2 at the origin endowed with the Burns–Simanca metric g_BS admits a regular quantization. We use this fact to prove that all coefficients in the Tian-Yau-Catlin-Zelditch expansion for the Burns–Simanca metric vanish and that a dense subset of (C ̃^2,g_BS) admits a Berezin quantization. In the second one, we prove that the generalized Simanca metric on the blow-up C ̃^n of C^n at the origin is projectively induced but not balanced for any integer n>=3. Finally, we prove as third result that any positive integer multiple of the Eguchi–Hanson metric, defined on a dense subset of C ̃^2/Z_2, is not balanced.

Quantizations of Kähler metrics on blow-ups

CANNAS AGHEDU, FRANCESCO
2021-02-26

Abstract

The thesis consists of three main results related to Kähler metrics on blow-ups. In the first one, we prove that the blow-up C ̃^2 of C^2 at the origin endowed with the Burns–Simanca metric g_BS admits a regular quantization. We use this fact to prove that all coefficients in the Tian-Yau-Catlin-Zelditch expansion for the Burns–Simanca metric vanish and that a dense subset of (C ̃^2,g_BS) admits a Berezin quantization. In the second one, we prove that the generalized Simanca metric on the blow-up C ̃^n of C^n at the origin is projectively induced but not balanced for any integer n>=3. Finally, we prove as third result that any positive integer multiple of the Eguchi–Hanson metric, defined on a dense subset of C ̃^2/Z_2, is not balanced.
26-feb-2021
File in questo prodotto:
File Dimensione Formato  
tesi di dottorato_Francesco Cannas Aghedu.pdf

accesso aperto

Descrizione: Quantizations of Kähler metrics on blow-ups
Tipologia: Tesi di dottorato
Dimensione 1.83 MB
Formato Adobe PDF
1.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/309588
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact