The goal of this tutorial is to provide the WSDM community with recent advances on the assessment and mitigation of data and algorithmic bias in recommender systems. We first introduce conceptual foundations, by presenting the state of the art and describing real-world examples of how bias can impact on recommendation algorithms from several perspectives (e.g., ethical and system objectives). The tutorial continues with a systematic showcase of algorithmic countermeasures to uncover, assess, and reduce bias along the recommendation design process. A practical part then provides attendees with implementations of pre-, in-, and post-processing bias mitigation algorithms, leveraging open-source tools and public datasets; in this part, tutorial participants are engaged in the design of bias countermeasures and in articulating impacts on stakeholders. We conclude the tutorial by analyzing emerging open issues and future directions in this rapidly evolving research area (Website: https://biasinrecsys.github.io/wsdm2021).
Advances in Bias-aware Recommendation on the Web
Ludovico BorattoCo-primo
;Mirko MarrasCo-primo
2021-01-01
Abstract
The goal of this tutorial is to provide the WSDM community with recent advances on the assessment and mitigation of data and algorithmic bias in recommender systems. We first introduce conceptual foundations, by presenting the state of the art and describing real-world examples of how bias can impact on recommendation algorithms from several perspectives (e.g., ethical and system objectives). The tutorial continues with a systematic showcase of algorithmic countermeasures to uncover, assess, and reduce bias along the recommendation design process. A practical part then provides attendees with implementations of pre-, in-, and post-processing bias mitigation algorithms, leveraging open-source tools and public datasets; in this part, tutorial participants are engaged in the design of bias countermeasures and in articulating impacts on stakeholders. We conclude the tutorial by analyzing emerging open issues and future directions in this rapidly evolving research area (Website: https://biasinrecsys.github.io/wsdm2021).File | Dimensione | Formato | |
---|---|---|---|
3437963.3441665.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
788.48 kB
Formato
Adobe PDF
|
788.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.