Rapid advances in perovskite photovoltaics have produced efficient solar cells, with stability and duration improving thanks to variations in materials composition, including the use of layered 2D perovskites. A major reason for the success of perovskite photovoltaics is the presence of free carriers as majority optical excitations in 3D materials at room temperature. On the other hand, the current understanding is that in 2D perovskites or at cryogenic temperatures insulating bound excitons form, which need to be split in solar cells and are not beneficial to photoconversion. Here we apply a tandem spectroscopy technique that combines ultrafast photoluminescence and differential transmission to demonstrate a plasma of unbound charge carriers in chemical equilibrium with a minority phase of light-emitting excitons, even in 2D perovskites and at cryogenic temperatures. We validate the technique with 3D perovskites and investigate 2D compounds basded on both Pb and Sn as metal cation. The underlying photophysics is interpreted as formation of large polarons, charge carriers coupled to lattice deformations, in place of excitons. A conductive polaron plasma foresees novel mechanisms for LEDs and lasers, as well as a prominent role for 2D perovskites in photovoltaics.

A new photophysics for 2D and 3D lead halide perovskites: Polaron plasma in equilibrium with bright excitons

Michele Saba;Angelica Simbula
Primo
;
Riccardo Pau;Daniela Marongiu;Francesco Quochi;Andrea Mura;Giovanni Bongiovanni
2021-01-01

Abstract

Rapid advances in perovskite photovoltaics have produced efficient solar cells, with stability and duration improving thanks to variations in materials composition, including the use of layered 2D perovskites. A major reason for the success of perovskite photovoltaics is the presence of free carriers as majority optical excitations in 3D materials at room temperature. On the other hand, the current understanding is that in 2D perovskites or at cryogenic temperatures insulating bound excitons form, which need to be split in solar cells and are not beneficial to photoconversion. Here we apply a tandem spectroscopy technique that combines ultrafast photoluminescence and differential transmission to demonstrate a plasma of unbound charge carriers in chemical equilibrium with a minority phase of light-emitting excitons, even in 2D perovskites and at cryogenic temperatures. We validate the technique with 3D perovskites and investigate 2D compounds basded on both Pb and Sn as metal cation. The underlying photophysics is interpreted as formation of large polarons, charge carriers coupled to lattice deformations, in place of excitons. A conductive polaron plasma foresees novel mechanisms for LEDs and lasers, as well as a prominent role for 2D perovskites in photovoltaics.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/315320
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact