Biological systems are usually highly sensitive to process conditions variations, such as temperature, pH, substrate concentration. For this reason, it is important to adequately control and monitor the process in order to guaranteeing product quality while maintaining adequate performance and productivity. The production of ethanol by fermentation is certainly one of the most important industrial bioprocesses, being ethanol an alternative source of energy. For this reason, valuable models of this process based on different kinetic considerations are available in literature, and they can be considered a valid benchmark to investigate control system and estimation techniques for biological reactors. Three different control strategies have been analysed: direct reactor temperature control, cascade control where the primary loop uses delayed ethanol measurements, and 2x2 control system with inferential control for the product concentration. The proposed configurations have been compared at different operating conditions and results show that the use of the inferential control is the most effective in case of severe disturbances.

Different control strategies for a yeast fermentation bioreactor

Lisci S.;Grosso M.;Tronci S.
2021-01-01

Abstract

Biological systems are usually highly sensitive to process conditions variations, such as temperature, pH, substrate concentration. For this reason, it is important to adequately control and monitor the process in order to guaranteeing product quality while maintaining adequate performance and productivity. The production of ethanol by fermentation is certainly one of the most important industrial bioprocesses, being ethanol an alternative source of energy. For this reason, valuable models of this process based on different kinetic considerations are available in literature, and they can be considered a valid benchmark to investigate control system and estimation techniques for biological reactors. Three different control strategies have been analysed: direct reactor temperature control, cascade control where the primary loop uses delayed ethanol measurements, and 2x2 control system with inferential control for the product concentration. The proposed configurations have been compared at different operating conditions and results show that the use of the inferential control is the most effective in case of severe disturbances.
2021
Bioreactor
Cascade control
Delayed measurement
Extended kalman filter
Inferential control
File in questo prodotto:
File Dimensione Formato  
Liscietal.pdf

accesso aperto

Descrizione: Articolo pricipale
Tipologia: versione editoriale
Dimensione 633.94 kB
Formato Adobe PDF
633.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/320887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact