The paper presents the design, control and prototyping of a Dual Active Bridge converter (DAB) devoted to interface a Sodium Metal Halide Battery (SMHB) to the DC grid of a telecom station. The design process is accomplished starting from telecom DC supply and SMHB specifications, especially power and voltage ratings and their corresponding variation ranges. Furthermore, DAB components are selected carefully based on an extensive performance analysis to maximise the energy efficiency, by enabling Zero-Voltage Switching (ZVS) over wide power and voltage operating ranges. The effectiveness of the proposed configuration is guaranteed also by a nested PI-based control system, which avoids unsuitable DC-bias current components by a proper management of phase-shift variations. Both simulations and experiments are presented and discussed, which corroborate the validity of all the design solutions.

Design, Control and Prototyping of a Bidirectional Dual Active Bridge Converter for integrating a Sodium Metal Halide Battery into a Telecom Station

Porru M;Serpi A;Damiano A
2021-01-01

Abstract

The paper presents the design, control and prototyping of a Dual Active Bridge converter (DAB) devoted to interface a Sodium Metal Halide Battery (SMHB) to the DC grid of a telecom station. The design process is accomplished starting from telecom DC supply and SMHB specifications, especially power and voltage ratings and their corresponding variation ranges. Furthermore, DAB components are selected carefully based on an extensive performance analysis to maximise the energy efficiency, by enabling Zero-Voltage Switching (ZVS) over wide power and voltage operating ranges. The effectiveness of the proposed configuration is guaranteed also by a nested PI-based control system, which avoids unsuitable DC-bias current components by a proper management of phase-shift variations. Both simulations and experiments are presented and discussed, which corroborate the validity of all the design solutions.
2021
978-1-7281-5135-9
Control system design; DC-bias current; Dual active bridge converters; Phase-shift modulation; Sodium metal halide batteries; Zero-voltage switching
File in questo prodotto:
File Dimensione Formato  
P107_2021_ECCE_DAB_IEEE_paper.pdf

Solo gestori archivio

Descrizione: IEEE Paper
Tipologia: versione editoriale (VoR)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/322556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact