In this paper, the integration of Brayton cycle PTES systems with Concentrating solar power (CSP) plants is proposed and investigated. Specific mathematical models were developed to simulate the PTES and CSP sections as well as to calculate the thermal profiles of the different TES storage tanks during the charging and discharging phases. As case study, an integrated PTES-CSP system using argon as working fluid and characterized by a nominal power of 5 MW and a nominal storage capacity of 4 equivalent hours of operation is considered. The influence of the main design parameters on two performance indexes, namely, the charge-to-discharge efficiencies of the sole PTES section and the integrated PTES-CSP plant, have been investigated. The results demonstrate that the use of high values of pressure ratio is beneficial for the charge-to-discharge efficiency of the integrated plant, even if too high operating pressures could be detrimental for the design of the solar receiver and the high temperature storage tank. The low temperature TES is a critical component due to its cryogenic operating conditions, but an increase in the minimum temperature should be achieved by increasing the inlet temperature of the LP compressor. A sensitivity analysis on the compressor and turbine efficiencies, maximum and minimum temperatures, circuit pressure drop and working fluid has been carried out. Finally, a feasible design of the PTES-CSP system with a PTES roundtrip efficiency of nearly 52% and a charge-to-discharge efficiency of the integrated PTES-CSP plant of about 36% was proposed.

Integration of pumped thermal energy storage systems based on Brayton cycle with CSP plants

Mario Petrollese
;
Mario Cascetta;Daniele Cocco;Vittorio Tola;Giorgio Cau
2021-01-01

Abstract

In this paper, the integration of Brayton cycle PTES systems with Concentrating solar power (CSP) plants is proposed and investigated. Specific mathematical models were developed to simulate the PTES and CSP sections as well as to calculate the thermal profiles of the different TES storage tanks during the charging and discharging phases. As case study, an integrated PTES-CSP system using argon as working fluid and characterized by a nominal power of 5 MW and a nominal storage capacity of 4 equivalent hours of operation is considered. The influence of the main design parameters on two performance indexes, namely, the charge-to-discharge efficiencies of the sole PTES section and the integrated PTES-CSP plant, have been investigated. The results demonstrate that the use of high values of pressure ratio is beneficial for the charge-to-discharge efficiency of the integrated plant, even if too high operating pressures could be detrimental for the design of the solar receiver and the high temperature storage tank. The low temperature TES is a critical component due to its cryogenic operating conditions, but an increase in the minimum temperature should be achieved by increasing the inlet temperature of the LP compressor. A sensitivity analysis on the compressor and turbine efficiencies, maximum and minimum temperatures, circuit pressure drop and working fluid has been carried out. Finally, a feasible design of the PTES-CSP system with a PTES roundtrip efficiency of nearly 52% and a charge-to-discharge efficiency of the integrated PTES-CSP plant of about 36% was proposed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/327450
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact