The present work deals with the structural optimization of self-supported Composite Steel Trussed-Concrete Beams (CSTCB). CSTCB belongs to the category of prefabricated steel truss embedded in a concrete core casted in situ. The truss is typically composed of a steel plate, which represents the bottom chord, a system of diagonal bars and some coupled rebars working as upper chord. Optimized geometries lead to the minimization of material use. This results in the minimization of the costs, the achievement of sustainability targets, the reduction on the self-weight as well as many architectural advantages. At this purpose, a MATLAB code is herein presented. The code aims to optimize the geometry of the beam by means of a genetic algorithm (ga). Two different operative phases, before and after the concrete hardening, which characterize the mechanical response of the beam, are considered within the code. In addition, a case study is developed showing the application of the Matlab code to a homogenized prismatic beam. Advances beyond the state of the art are therefore shown.

Structural optimization of composite steel trussed-concrete beams

Deligia M.;Congiu E.;Fenu L.
2021-01-01

Abstract

The present work deals with the structural optimization of self-supported Composite Steel Trussed-Concrete Beams (CSTCB). CSTCB belongs to the category of prefabricated steel truss embedded in a concrete core casted in situ. The truss is typically composed of a steel plate, which represents the bottom chord, a system of diagonal bars and some coupled rebars working as upper chord. Optimized geometries lead to the minimization of material use. This results in the minimization of the costs, the achievement of sustainability targets, the reduction on the self-weight as well as many architectural advantages. At this purpose, a MATLAB code is herein presented. The code aims to optimize the geometry of the beam by means of a genetic algorithm (ga). Two different operative phases, before and after the concrete hardening, which characterize the mechanical response of the beam, are considered within the code. In addition, a case study is developed showing the application of the Matlab code to a homogenized prismatic beam. Advances beyond the state of the art are therefore shown.
2021
MATLAB
Optimal design
Steel-Concrete compoiste beams
Structural optimization
Variable section beams
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2452321621001633-main.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/334804
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact