In this research, a model for the physical absorption of CO2 from flue gas with [hmim][Tf2N] ionic liquid, an innovative solvent used in the last CO2 absorption processes, is developed in Aspen Plus and optimized through a central composite design by using Minitab. Then a unique combination of simulation and statistical analysis is carried out for the process. The aim is to find the optimal operating conditions that can maximize the amount of captured CO2 while minimizing the total costs. The study shows the percentage of CO2 removal is 93.7%, operating costs are 0.279 trillion euro/a and capital costs are 21.9 million euro/year. The obtained results are in agreement with other works reported in literature, considering the high cost for ionic liquid.
Innovative application of statistical analysis for the optimization of CO2 absorption from flue gas with ionic liquid
Leonzio G
;
2019-01-01
Abstract
In this research, a model for the physical absorption of CO2 from flue gas with [hmim][Tf2N] ionic liquid, an innovative solvent used in the last CO2 absorption processes, is developed in Aspen Plus and optimized through a central composite design by using Minitab. Then a unique combination of simulation and statistical analysis is carried out for the process. The aim is to find the optimal operating conditions that can maximize the amount of captured CO2 while minimizing the total costs. The study shows the percentage of CO2 removal is 93.7%, operating costs are 0.279 trillion euro/a and capital costs are 21.9 million euro/year. The obtained results are in agreement with other works reported in literature, considering the high cost for ionic liquid.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.