With its ability to operate at high speeds and capacity, high-speed rail offers a fast, dependable, and ecofriendly urban transportation option. Safety-critical systems such as high-speed rail signaling systems must be tested regularly to assess compliance with specifications and ensure reliable performance. Given that the onboard equipment is the core component of the signaling system, conducting safety testing on this equipment is of utmost importance. Current methods of analyzing test requirements mainly rely on human interpretation of specifications. However, the official technical specifications usually only outline standard operational scenarios, which could result in an inefficient and unclear safety analysis. This paper focuses on safety-oriented testing for onboard equipment. In particular, we propose a Petri net based approach to generate test cases for diverse operational scenarios. This approach improves both the efficiency and reliability of the testing process while ensuring compliance with safety requirements.

Safety-oriented Testing for High-speed Rail Onboard Equipment Using Petri Nets

Li Y.
Primo
;
Tong Y.
Secondo
;
Giua A.
Ultimo
2023-01-01

Abstract

With its ability to operate at high speeds and capacity, high-speed rail offers a fast, dependable, and ecofriendly urban transportation option. Safety-critical systems such as high-speed rail signaling systems must be tested regularly to assess compliance with specifications and ensure reliable performance. Given that the onboard equipment is the core component of the signaling system, conducting safety testing on this equipment is of utmost importance. Current methods of analyzing test requirements mainly rely on human interpretation of specifications. However, the official technical specifications usually only outline standard operational scenarios, which could result in an inefficient and unclear safety analysis. This paper focuses on safety-oriented testing for onboard equipment. In particular, we propose a Petri net based approach to generate test cases for diverse operational scenarios. This approach improves both the efficiency and reliability of the testing process while ensuring compliance with safety requirements.
File in questo prodotto:
File Dimensione Formato  
23pn4tt.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/376264
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact