We present mathematical theory showing that supercell approximations accurately predict the main spectral gaps of Fibonacci quasicrystals. This theory is based on characterising the growth of the underlying recursion relation and corroborates the existence of previously observed 'super band gaps'. We demonstrate our general theory through application to a one-dimensional metamaterial, composed of a system of structured rods.
Mathematical Theory For Supercell Approximations Of Fibonacci Quasicrystals
Morini L.
2023-01-01
Abstract
We present mathematical theory showing that supercell approximations accurately predict the main spectral gaps of Fibonacci quasicrystals. This theory is based on characterising the growth of the underlying recursion relation and corroborates the existence of previously observed 'super band gaps'. We demonstrate our general theory through application to a one-dimensional metamaterial, composed of a system of structured rods.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.