Machine-learning phishing webpage detectors (ML-PWD) have been shown to suffer from adversarial manipulations of the HTML code of the input webpage. Nevertheless, the attacks recently proposed have demonstrated limited effectiveness due to their lack of optimizing the usage of the adopted manipulations, and they focus solely on specific elements of the HTML code. In this work, we overcome these limitations by first designing a novel set of fine-grained manipulations which allow to modify the HTML code of the input phishing webpage without compromising its maliciousness and visual appearance, i.e., the manipulations are functionality- and rendering-preserving by design. We then select which manipulations should be applied to bypass the target detector by a query-efficient black-box optimization algorithm. Our experiments show that our attacks are able to raze to the ground the performance of current state-of-the-art ML-PWD using just 30 queries, thus overcoming the weaker attacks developed in previous work, and enabling a much fairer robustness evaluation of ML-PWD.
Raze to the ground: query-efficient adversarial HTML attacks on machine-learning phishing webpage detectors
Pintor, Maura;Biggio, Battista
2023-01-01
Abstract
Machine-learning phishing webpage detectors (ML-PWD) have been shown to suffer from adversarial manipulations of the HTML code of the input webpage. Nevertheless, the attacks recently proposed have demonstrated limited effectiveness due to their lack of optimizing the usage of the adopted manipulations, and they focus solely on specific elements of the HTML code. In this work, we overcome these limitations by first designing a novel set of fine-grained manipulations which allow to modify the HTML code of the input phishing webpage without compromising its maliciousness and visual appearance, i.e., the manipulations are functionality- and rendering-preserving by design. We then select which manipulations should be applied to bypass the target detector by a query-efficient black-box optimization algorithm. Our experiments show that our attacks are able to raze to the ground the performance of current state-of-the-art ML-PWD using just 30 queries, thus overcoming the weaker attacks developed in previous work, and enabling a much fairer robustness evaluation of ML-PWD.File | Dimensione | Formato | |
---|---|---|---|
aisec127-montaruli.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
798.12 kB
Formato
Adobe PDF
|
798.12 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Raze_to_the_Ground__Query_Efficient_Adversarial_HTML_Attacks_on_Machine_Learning_Phishing_Webpage_Detectors.pdf
accesso aperto
Tipologia:
versione post-print (AAM)
Dimensione
997.07 kB
Formato
Adobe PDF
|
997.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.