The envisaged fifth-generation (5G) and beyond networks represent a paradigm shift for global communications, offering unprecedented breakthroughs in media service delivery with novel capabilities and use cases. Addressing the critical research verticals and challenges that characterize the International Mobile Telecommunications (IMT)-2030 framework requires a compelling mix of enabling radio access technologies (RAT) and native softwarized, disaggregated, and intelligent radio access network (RAN) conceptions. In such a context, the multicast/broadcast ser vice (MBS) capability is an appealing feature to address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-latency applications. Embracing the MBS capability as a primary component of the envisaged 5G and beyond networks comes with multiple open challenges. In this research, we contextualize and address the necessity of ensuring stringent quality of service (QoS)/quality of experience (QoE) requirements, multicasting over millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies, and handling complex mobility behaviors. In the broad problem space around these three significant challenges, we focus on the specific research problems of effectively handling the trade-off between multicasting gain and multiuser diversity, along with the trade-off between optimal network performance and computational complexity. In this research, we cover essential aspects at the intersection of MBS, radio resource management (RRM), machine learning (ML), and the Open RAN (O-RAN) framework. We characterize and address the dynamic multicast multiuser diversity through low-complexity RRM solutions aided by ML, orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) techniques in 5G MBS and beyond networks. We characterize the performance of the multicast access techniques conventional multicast scheme (CMS), subgrouping based on OMA (S-OMA), and subgrouping based on NOMA (S-NOMA). We provide conditions for their adequate selection regarding the specific network conditions (Chapter 4). Consequently, we propose heuristic methods for the dynamic multicast access technique selection and resource allocation, taking advantage of the multiuser diversity (Chapter 5.1). Moreover, we proposed a multicasting strategy based on fixed pre-computed multiple-input multiple-output (MIMO) multi-beams and S-NOMA (Chapter 5.2). Our approach tackles specific throughput requirements for enabling extended reality (XR) applications attending multiple users and handling their spatial and channel quality diversity. We address the computational complexity (CC) associated with the dynamic multicast RRM strategies and highlight the implications of fast variations in the reception conditions of the multicast group (MG) members. We propose a low complexity ML-based solution structured by a multicast-oriented trigger to avoid overrunning the algorithm, a K-Means clustering for group-oriented detection and splitting, and a classifier for selecting the most suitable multicast access technique (Chapter 6.1). Our proposed approaches allow addressing the trade-off between optimal network performance and CC by maximizing specific QoS parameters through non-optimal solutions, considerably reducing the CC of conventional exhaustive mechanisms. Moreover, we discuss the insertion of ML-based multicasting RRM solutions into the envisioned disaggregated O-RAN framework (Chapter 6.2.5). We analyze specific MBS tasks and the importance of a native decentralized, softwarized, and intelligent conception. We assess the effectiveness of our proposal under multiple numerical and link level simulations of recreated 5G MBS use cases operating in µWave and mmWave. We evaluate various network conditions, service constraints, and users’ mobility behaviors.

Multiuser Diversity Management for Multicast/Broadcast Services in 5G and Beyond Networks

FONTES PUPO, ERNESTO
2024-03-12

Abstract

The envisaged fifth-generation (5G) and beyond networks represent a paradigm shift for global communications, offering unprecedented breakthroughs in media service delivery with novel capabilities and use cases. Addressing the critical research verticals and challenges that characterize the International Mobile Telecommunications (IMT)-2030 framework requires a compelling mix of enabling radio access technologies (RAT) and native softwarized, disaggregated, and intelligent radio access network (RAN) conceptions. In such a context, the multicast/broadcast ser vice (MBS) capability is an appealing feature to address the ever-growing traffic demands, disruptive multimedia services, massive connectivity, and low-latency applications. Embracing the MBS capability as a primary component of the envisaged 5G and beyond networks comes with multiple open challenges. In this research, we contextualize and address the necessity of ensuring stringent quality of service (QoS)/quality of experience (QoE) requirements, multicasting over millimeter-wave (mmWave) and sub-Terahertz (THz) frequencies, and handling complex mobility behaviors. In the broad problem space around these three significant challenges, we focus on the specific research problems of effectively handling the trade-off between multicasting gain and multiuser diversity, along with the trade-off between optimal network performance and computational complexity. In this research, we cover essential aspects at the intersection of MBS, radio resource management (RRM), machine learning (ML), and the Open RAN (O-RAN) framework. We characterize and address the dynamic multicast multiuser diversity through low-complexity RRM solutions aided by ML, orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) techniques in 5G MBS and beyond networks. We characterize the performance of the multicast access techniques conventional multicast scheme (CMS), subgrouping based on OMA (S-OMA), and subgrouping based on NOMA (S-NOMA). We provide conditions for their adequate selection regarding the specific network conditions (Chapter 4). Consequently, we propose heuristic methods for the dynamic multicast access technique selection and resource allocation, taking advantage of the multiuser diversity (Chapter 5.1). Moreover, we proposed a multicasting strategy based on fixed pre-computed multiple-input multiple-output (MIMO) multi-beams and S-NOMA (Chapter 5.2). Our approach tackles specific throughput requirements for enabling extended reality (XR) applications attending multiple users and handling their spatial and channel quality diversity. We address the computational complexity (CC) associated with the dynamic multicast RRM strategies and highlight the implications of fast variations in the reception conditions of the multicast group (MG) members. We propose a low complexity ML-based solution structured by a multicast-oriented trigger to avoid overrunning the algorithm, a K-Means clustering for group-oriented detection and splitting, and a classifier for selecting the most suitable multicast access technique (Chapter 6.1). Our proposed approaches allow addressing the trade-off between optimal network performance and CC by maximizing specific QoS parameters through non-optimal solutions, considerably reducing the CC of conventional exhaustive mechanisms. Moreover, we discuss the insertion of ML-based multicasting RRM solutions into the envisioned disaggregated O-RAN framework (Chapter 6.2.5). We analyze specific MBS tasks and the importance of a native decentralized, softwarized, and intelligent conception. We assess the effectiveness of our proposal under multiple numerical and link level simulations of recreated 5G MBS use cases operating in µWave and mmWave. We evaluate various network conditions, service constraints, and users’ mobility behaviors.
12-mar-2024
File in questo prodotto:
File Dimensione Formato  
tesi di dottorato_Ernesto Fontes Pupo.pdf

accesso aperto

Descrizione: Multiuser Diversity Management for Multicast/Broadcast Services in 5G and Beyond Networks
Tipologia: Tesi di dottorato
Dimensione 8.3 MB
Formato Adobe PDF
8.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/393584
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact