Current recommendation methods based on knowledge graphs rely on entity and relation representations for several steps along the pipeline, with knowledge completion and path reasoning being the most influential. Despite their similarities, the most effective representation methods for these steps differ, leading to inefficiencies, limited representativeness, and reduced interpretability. In this paper, we introduce KGGLM, a decoder-only Transformer model designed for generalizable knowledge representation learning to support recommendation. The model is trained on generic paths sampled from the knowledge graph to capture foundational patterns, and then fine-tuned on paths specific of the downstream step (knowledge completion and path reasoning in our case). Experiments on ML1M and LFM1M show that KGGLM beats twenty-two baselines in effectiveness under both knowledge completion and recommendation. Source code and pre-processed data sets are available at https://github.com/mirkomarras/kgglm.

KGGLM: A Generative Language Model for Generalizable Knowledge Graph Representation Learning in Recommendation

Balloccu G.;Boratto L.;Fenu G.;Marras M.;Soccol A.
2024-01-01

Abstract

Current recommendation methods based on knowledge graphs rely on entity and relation representations for several steps along the pipeline, with knowledge completion and path reasoning being the most influential. Despite their similarities, the most effective representation methods for these steps differ, leading to inefficiencies, limited representativeness, and reduced interpretability. In this paper, we introduce KGGLM, a decoder-only Transformer model designed for generalizable knowledge representation learning to support recommendation. The model is trained on generic paths sampled from the knowledge graph to capture foundational patterns, and then fine-tuned on paths specific of the downstream step (knowledge completion and path reasoning in our case). Experiments on ML1M and LFM1M show that KGGLM beats twenty-two baselines in effectiveness under both knowledge completion and recommendation. Source code and pre-processed data sets are available at https://github.com/mirkomarras/kgglm.
2024
Generative Artificial Intelligence
Knowledge Completion
Knowledge Graph
Knowledge Graph Embeddings
Knowledge Representation Learning
Language Model
Recommendation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/431009
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact