Urban environments are demanding effective and efficient detection in 3D of objects using monocular cameras, e.g., for intelligent monitoring or decision support. The limited availability of large-scale roadside camera datasets and the mere focus of existing 3D object detection methods on autonomous driving scenarios pose significant challenges for their practical adoption, unfortunately. In this paper, we conduct a systematic analysis of 3D object detection methods, originally applied to autonomous driving scenarios, on monocular roadside images. Under a common evaluation protocol, based on a synthetic dataset with images from monocular roadside cameras located at intersection areas, we analyzed the detection quality achieved by these methods in the roadside context and the influence of key operational parameters. Our study finally highlights open challenges and future directions in this field.

Investigating the Effectiveness of 3D Monocular Object Detection Methods for Roadside Scenarios

Barra S.;Marras M.;Mohamed S.;Podda A. S.;Saia R.
2024-01-01

Abstract

Urban environments are demanding effective and efficient detection in 3D of objects using monocular cameras, e.g., for intelligent monitoring or decision support. The limited availability of large-scale roadside camera datasets and the mere focus of existing 3D object detection methods on autonomous driving scenarios pose significant challenges for their practical adoption, unfortunately. In this paper, we conduct a systematic analysis of 3D object detection methods, originally applied to autonomous driving scenarios, on monocular roadside images. Under a common evaluation protocol, based on a synthetic dataset with images from monocular roadside cameras located at intersection areas, we analyzed the detection quality achieved by these methods in the roadside context and the influence of key operational parameters. Our study finally highlights open challenges and future directions in this field.
2024
3D recognition
object detection
smart city
traffic control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/432647
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact