An approach to setting the architecture and the initial weights of an artificial neural network for solving classification problems is presented. A nonneural phase finds an approximate solution to the classification problems by constraining the shape of classification regions. After an appropriate mapping into a neural net, neural training is applied to refine the solution. Results on an image recognition application are presented

A technique for defining the architecture and weights of a neural image classifier

ROLI, FABIO;
1992-01-01

Abstract

An approach to setting the architecture and the initial weights of an artificial neural network for solving classification problems is presented. A nonneural phase finds an approximate solution to the classification problems by constraining the shape of classification regions. After an appropriate mapping into a neural net, neural training is applied to refine the solution. Results on an image recognition application are presented
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/44027
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact