Rule-based approaches allow users to customize XR environments. However, the current menu-based interfaces still create barriers for end-user developers. Chatbots based on Large Language Models (LLMs) have the potential to reduce the threshold needed for rule creation, but how users articulate their intentions through conversation remains under-explored. This work investigates how users express event-condition-action automation rules in Virtual Reality (VR) and Augmented Reality (AR) environments. Through two user studies, we show that the dialogues share consistent strategies across the interaction setting (keywords, difficulties in expressing conditions, task success), even if we registered different adaptations for each setting (verbal structure, event vs action first rules). Our findings are relevant for the design and implementation of chatbot-based support for expressing automations in an XR setting.

Conversational Rule Creation in XR: User’s Strategies in VR and AR Automation

Carcangiu, Alessandro;Mereu, Jacopo;Spano, Lucio Davide
2025-01-01

Abstract

Rule-based approaches allow users to customize XR environments. However, the current menu-based interfaces still create barriers for end-user developers. Chatbots based on Large Language Models (LLMs) have the potential to reduce the threshold needed for rule creation, but how users articulate their intentions through conversation remains under-explored. This work investigates how users express event-condition-action automation rules in Virtual Reality (VR) and Augmented Reality (AR) environments. Through two user studies, we show that the dialogues share consistent strategies across the interaction setting (keywords, difficulties in expressing conditions, task success), even if we registered different adaptations for each setting (verbal structure, event vs action first rules). Our findings are relevant for the design and implementation of chatbot-based support for expressing automations in an XR setting.
2025
9783031954511
9783031954528
End-User Development
eXtended Reality
Immersive Authoring
Large Language Models
Rules
File in questo prodotto:
File Dimensione Formato  
EUD4XR_IS_EUD (2).pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 5.91 MB
Formato Adobe PDF
5.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/459565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact