Recent work establishes a direct link between the complexity of a linear logic proof in terms of the exchange rule and the topological complexity of its corresponding proof net, expressed as the minimal rank of the surfaces on which the proof net can be drawn without crossing edges. That surface is essentially computed by sequentialising the proof net into a sequent calculus which is derived from that of linear logic by attaching an appropriate structure to the sequents. We show here that this topological calculus can be given a better-behaved logical status, when viewed in the variety-presentation framework introduced by the first author. This change of viewpoint gives rise to permutative logic, which enjoys cut elimination and focussing properties and comes equipped with new modalities for the management of the exchange rule. Moreover, both cyclic and linear logic are shown to be embedded into permutative logic. It provides the natural logical framework in which to study and constrain the topological complexity of proofs, and hence the use of the exchange rule.
Permutative Logic
PULCINI, GABRIELE;
2005-01-01
Abstract
Recent work establishes a direct link between the complexity of a linear logic proof in terms of the exchange rule and the topological complexity of its corresponding proof net, expressed as the minimal rank of the surfaces on which the proof net can be drawn without crossing edges. That surface is essentially computed by sequentialising the proof net into a sequent calculus which is derived from that of linear logic by attaching an appropriate structure to the sequents. We show here that this topological calculus can be given a better-behaved logical status, when viewed in the variety-presentation framework introduced by the first author. This change of viewpoint gives rise to permutative logic, which enjoys cut elimination and focussing properties and comes equipped with new modalities for the management of the exchange rule. Moreover, both cyclic and linear logic are shown to be embedded into permutative logic. It provides the natural logical framework in which to study and constrain the topological complexity of proofs, and hence the use of the exchange rule.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.