The growth of the white-rot basidiomycete Pleurotus sajor-caju in malt-agar plates was inhibited by three naturally occurring, plant-derived naphthoquinones: juglone, lawsone, and plumbagin. The latter two compounds exerted the most potent antifungal activity, and lawsone killed the mycelium at concentrations higher than 200 ppm. Plates containing juglone and lawsone presented large decolorized areas extending from area of fungal growth, suggesting an extracellular enzymatic degradation of these quinones. Screening of culture plates for extracellular enzymatic activities revealed the presence of both laccase and veratryl alcohol oxidase in most plates, the diffusion of both enzymes matching the decolorized area. In agitated cultures, the presence of juglone was found to stimulate the production of veratryl alcohol oxidase in a significant manner. This is the first time degradation of plant derived naphthoquinones by a white-rot fun.-us is reported.
Effects of plant-derived naphthoquinones on the growth of Pleurotus sajor-caju and degradation of the compounds by fungal cultures
CURRELI, NICOLETTA;COMANDINI, ORNELLA;SANJUST, ENRICO;RINALDI, ANDREA;
2001-01-01
Abstract
The growth of the white-rot basidiomycete Pleurotus sajor-caju in malt-agar plates was inhibited by three naturally occurring, plant-derived naphthoquinones: juglone, lawsone, and plumbagin. The latter two compounds exerted the most potent antifungal activity, and lawsone killed the mycelium at concentrations higher than 200 ppm. Plates containing juglone and lawsone presented large decolorized areas extending from area of fungal growth, suggesting an extracellular enzymatic degradation of these quinones. Screening of culture plates for extracellular enzymatic activities revealed the presence of both laccase and veratryl alcohol oxidase in most plates, the diffusion of both enzymes matching the decolorized area. In agitated cultures, the presence of juglone was found to stimulate the production of veratryl alcohol oxidase in a significant manner. This is the first time degradation of plant derived naphthoquinones by a white-rot fun.-us is reported.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.