We explore the neurobiological bases of attention deficit hyperactivity disorder (ADHD) from the viewpoint of the neurochemistry and psychopharmacology of the catecholamine-based behavioural systems. The contributions of dopamine (DA) and noradrenaline (NA) neurotransmission to the motor and cognitive symptoms of ADHD (e.g. hyperactivity, variable and impulsive responses) are studied in rodent and primate models. These models represent elements of the behavioural units observed in subjects with ADHD clinically, or in laboratory settings (e.g. locomotion, changed sensitivity/responsivity to novelty/reinforcement and measures of executive processing). In particular, the models selected emphasize traits that are strongly influenced by mesocorticolimbic DA in the spontaneously hypertensive (SHR) and the Naples high excitability (NHE) rat lines. In this context, the mode of action of methylphenidate treatment is discussed We also describe current views on the altered control by mesolimbic catecholamines of appropriate and inappropriate goal-directed behaviour, and the tolerance or intolerance of delayed reinforcement in ADHD children and animal models. Recent insights into the previously underestimated role of the NA system in the control of mesocortical DA function, and the frontal role in processing information are elaborated.

The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles

ZUDDAS, ALESSANDRO;DEVOTO, PAOLA;
2005-01-01

Abstract

We explore the neurobiological bases of attention deficit hyperactivity disorder (ADHD) from the viewpoint of the neurochemistry and psychopharmacology of the catecholamine-based behavioural systems. The contributions of dopamine (DA) and noradrenaline (NA) neurotransmission to the motor and cognitive symptoms of ADHD (e.g. hyperactivity, variable and impulsive responses) are studied in rodent and primate models. These models represent elements of the behavioural units observed in subjects with ADHD clinically, or in laboratory settings (e.g. locomotion, changed sensitivity/responsivity to novelty/reinforcement and measures of executive processing). In particular, the models selected emphasize traits that are strongly influenced by mesocorticolimbic DA in the spontaneously hypertensive (SHR) and the Naples high excitability (NHE) rat lines. In this context, the mode of action of methylphenidate treatment is discussed We also describe current views on the altered control by mesolimbic catecholamines of appropriate and inappropriate goal-directed behaviour, and the tolerance or intolerance of delayed reinforcement in ADHD children and animal models. Recent insights into the previously underestimated role of the NA system in the control of mesocortical DA function, and the frontal role in processing information are elaborated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/100285
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 92
social impact