We investigate an expansion of quasi-MV algebras by a genuine quantum unary operator. The variety $\sqrt{^{\prime }}\mathbb{ QMV}$ of such $\sqrt{^{\prime }}$ \emph{quasi-MV algebras} has a subquasivariety whose members - called \emph{cartesian} - can be obtained in an appropriate way out of MV algebras. After showing that cartesian $\sqrt{ ^{\prime }}$ quasi-MV algebras generate $\sqrt{^{\prime }}\mathbb{QMV}$, we prove a standard completeness theorem for $\sqrt{^{\prime }}\mathbb{QMV}$ w.r.t. an algebra over the complex numbers.
Expanding quasi-MV algebras by a quantum operator
GIUNTINI, ROBERTO;LEDDA, ANTONIO;PAOLI, FRANCESCO
2007-01-01
Abstract
We investigate an expansion of quasi-MV algebras by a genuine quantum unary operator. The variety $\sqrt{^{\prime }}\mathbb{ QMV}$ of such $\sqrt{^{\prime }}$ \emph{quasi-MV algebras} has a subquasivariety whose members - called \emph{cartesian} - can be obtained in an appropriate way out of MV algebras. After showing that cartesian $\sqrt{ ^{\prime }}$ quasi-MV algebras generate $\sqrt{^{\prime }}\mathbb{QMV}$, we prove a standard completeness theorem for $\sqrt{^{\prime }}\mathbb{QMV}$ w.r.t. an algebra over the complex numbers.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.