Most of the properties of black holes can be mimicked by horizonless compact objects such as gravastars and boson stars. We show that these ultracompact objects develop a strong ergoregion instability when rapidly spinning. Instability time scales can be of the order of 0.1 seconds to 1 week for objects with mass M ¼ 1 106M and angular momentum J > 0:4M2. This provides a strong indication that ultracompact objects with large rotation are black holes. Explosive events due to ergoregion instability have a well-defined gravitational-wave signature. These events could be detected by next-generation gravitational-wave detectors such as Advanced LIGO or LISA.
Ergoregion instability of ultracompact astrophysical objects
PANI, PAOLO;CADONI, MARIANO;
2008-01-01
Abstract
Most of the properties of black holes can be mimicked by horizonless compact objects such as gravastars and boson stars. We show that these ultracompact objects develop a strong ergoregion instability when rapidly spinning. Instability time scales can be of the order of 0.1 seconds to 1 week for objects with mass M ¼ 1 106M and angular momentum J > 0:4M2. This provides a strong indication that ultracompact objects with large rotation are black holes. Explosive events due to ergoregion instability have a well-defined gravitational-wave signature. These events could be detected by next-generation gravitational-wave detectors such as Advanced LIGO or LISA.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.