In this paper we present a “progressive filtering” technique aimed at improving the performances of a multiagent system devised to perform text categorization. The technique exploits the discriminant capabilities of multiple classifiers organized into a taxonomy and is aimed at coping with a problem that occurs very often in text categorization tasks, i.e. with the unbalance –for any category– between relevant and non relevant inputs. Experiments, conducted on RCV1-v2, highlight the validity of the approach.

Using Taxonomic Domain Knowledge in Text Categorization Tasks

ARMANO, GIULIANO;MASCIA, FRANCESCO;VARGIU, ELOISA
2007-01-01

Abstract

In this paper we present a “progressive filtering” technique aimed at improving the performances of a multiagent system devised to perform text categorization. The technique exploits the discriminant capabilities of multiple classifiers organized into a taxonomy and is aimed at coping with a problem that occurs very often in text categorization tasks, i.e. with the unbalance –for any category– between relevant and non relevant inputs. Experiments, conducted on RCV1-v2, highlight the validity of the approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/100560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact