This paper concerns minimization and maximization of the energy integral in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the equilibrium configuration of a non-homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to maximize or minimize the energy integral of the corresponding plate.
Maximization and minimization in problems involving the bi-Laplacian
ANEDDA, CLAUDIA
2011-01-01
Abstract
This paper concerns minimization and maximization of the energy integral in problems involving the bi-Laplacian under either homogeneous Navier boundary conditions or homogeneous Dirichlet boundary conditions. Physically, in case of N = 2, our equation models the equilibrium configuration of a non-homogeneous plate Ω which is either hinged or clamped along the boundary. Given several materials (with different densities) of total extension |Ω|, we investigate the location of these materials inside Ω so to maximize or minimize the energy integral of the corresponding plate.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Maximization and Minimization in problems involving the bi-Laplacian.pdf
Solo gestori archivio
Tipologia:
versione editoriale
Dimensione
173.52 kB
Formato
Adobe PDF
|
173.52 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.