We present theoretical electron affinities, calculated as total energy differences, for a large sample of polycyclic aromatic hydrocarbons ( PAHs), ranging in size from azulene (C10H8) to dicoronylene (C48H20). For 20 out of 22 molecules under study we obtained electron affinity values in the range 0.4 - 2.0 eV, showing them to be able to accept an additional electron in their LUMO pi(star) orbital. For the mono-anions we computed the absolute photo-absorption cross-sections up to the vacuum ultraviolet (VUV) using an implementation in real time and real space of the Time-Dependent Density Functional Theory (TD - DFT), an approach which has already been proven to yield accurate results for neutral and cationic PAHs. Comparison with available experimental data hints that this is the case for mono-anions as well. We find that PAH anions, like their parent molecules and the corresponding cations, display strong pi*-->pi electronic transitions in the UV. The present results provide a quantitative foundation to estimate the fraction of specific PAHs which can be singly negatively charged in various interstellar environments, to simulate their photophysics in detail and to evaluate their contribution to the interstellar extinction curve.

Theoretical electron affinities of PAHs and electronic absorption spectra of their mono-anions

MALLOCI, GIULIANO;CAPPELLINI, GIANCARLO;FIORENTINI, VINCENZO;
2005-01-01

Abstract

We present theoretical electron affinities, calculated as total energy differences, for a large sample of polycyclic aromatic hydrocarbons ( PAHs), ranging in size from azulene (C10H8) to dicoronylene (C48H20). For 20 out of 22 molecules under study we obtained electron affinity values in the range 0.4 - 2.0 eV, showing them to be able to accept an additional electron in their LUMO pi(star) orbital. For the mono-anions we computed the absolute photo-absorption cross-sections up to the vacuum ultraviolet (VUV) using an implementation in real time and real space of the Time-Dependent Density Functional Theory (TD - DFT), an approach which has already been proven to yield accurate results for neutral and cationic PAHs. Comparison with available experimental data hints that this is the case for mono-anions as well. We find that PAH anions, like their parent molecules and the corresponding cations, display strong pi*-->pi electronic transitions in the UV. The present results provide a quantitative foundation to estimate the fraction of specific PAHs which can be singly negatively charged in various interstellar environments, to simulate their photophysics in detail and to evaluate their contribution to the interstellar extinction curve.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/101225
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 57
social impact