We deal with the Dirichlet problem \Delta u+u^{-\gamma} +g(u) = 0 in a bounded smooth domain \Omega \subset R^N with u = 0 on the boundary \partial \Omega, where \gamma > 1 and g is a smooth function. Assuming |g(t)| grows like t^{-\nu}, 0< \nu < \gamma, as t \rightarrow 0, we find optimal estimates of u(x) in terms of the distance of x from the boundary \partial \Omega.

Boundary estimates for solutions to singular elliptic equations

ANEDDA, CLAUDIA;CUCCU, FABRIZIO;
2005-01-01

Abstract

We deal with the Dirichlet problem \Delta u+u^{-\gamma} +g(u) = 0 in a bounded smooth domain \Omega \subset R^N with u = 0 on the boundary \partial \Omega, where \gamma > 1 and g is a smooth function. Assuming |g(t)| grows like t^{-\nu}, 0< \nu < \gamma, as t \rightarrow 0, we find optimal estimates of u(x) in terms of the distance of x from the boundary \partial \Omega.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/101703
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact