In the present paper we investigate the lattice of subvarieties of the variety of $\sqrt{^{\prime }}$\emph{\ quasi-MV algebras}. Beside some general results on the structure of such a lattice, the main contribution of this work is the solution of a long-standing open problem concerning these algebras: namely, we show that the variety generated by the standard disk algebra $\mathbf{D}_{r}$ is not finitely based, and we provide an infinite equational basis for the same variety.

The Lattice of Subvarieties of root ' quasi-MV Algebras

PAOLI, FRANCESCO;LEDDA, ANTONIO;GIUNTINI, ROBERTO
2010-01-01

Abstract

In the present paper we investigate the lattice of subvarieties of the variety of $\sqrt{^{\prime }}$\emph{\ quasi-MV algebras}. Beside some general results on the structure of such a lattice, the main contribution of this work is the solution of a long-standing open problem concerning these algebras: namely, we show that the variety generated by the standard disk algebra $\mathbf{D}_{r}$ is not finitely based, and we provide an infinite equational basis for the same variety.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/102213
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact