Let ω ⊂ R N be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary ∂ω in the behaviour of the solution to the homogeneous Dirichlet boundary value problem for the singular semilinear equation δu + f(u) = 0. Under appropriate growth conditions on f(t) as t approaches zero, we find an asymptotic expansion up to the second order of the solution in terms of the distance from x to the boundary ∂ ω .

Second-order boundary estimates for solutions to singular elliptic equations

ANEDDA, CLAUDIA
2009-01-01

Abstract

Let ω ⊂ R N be a bounded smooth domain. We investigate the effect of the mean curvature of the boundary ∂ω in the behaviour of the solution to the homogeneous Dirichlet boundary value problem for the singular semilinear equation δu + f(u) = 0. Under appropriate growth conditions on f(t) as t approaches zero, we find an asymptotic expansion up to the second order of the solution in terms of the distance from x to the boundary ∂ ω .
File in questo prodotto:
File Dimensione Formato  
Second-order boundary estimates for solutions to singular elliptic equations.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 245.58 kB
Formato Adobe PDF
245.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/102411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 2
social impact