We investigate two cooperative variants (with and without lies) of the Guessing Secrets problem, introduced in [L. Chung, R. Graham, F.T. Leighton, Guessing secrets, Electronic Journal of Combinatorics 8 (2001)] in the attempt to model an interactive situation arising in the World Wide Web, in relation to the efficient delivery of Internet content. After placing bounds on the cardinality of the smallest set of questions needed to win the game, we establish that the algebra of all the states of knowledge induced by any designated game is a pseudocomplemented lattice. In particular, its join semilattice reduct is embeddable into the corresponding reduct of the Boolean algebra 2N1, where N is the cardinality of the search space.
Two cooperative versions of the Guessing Secrets problem
SERGIOLI, GIUSEPPE;LEDDA, ANTONIO;PAOLI, FRANCESCO;GIUNTINI, ROBERTO;FREYTES, HECTOR CARLOS;
2009-01-01
Abstract
We investigate two cooperative variants (with and without lies) of the Guessing Secrets problem, introduced in [L. Chung, R. Graham, F.T. Leighton, Guessing secrets, Electronic Journal of Combinatorics 8 (2001)] in the attempt to model an interactive situation arising in the World Wide Web, in relation to the efficient delivery of Internet content. After placing bounds on the cardinality of the smallest set of questions needed to win the game, we establish that the algebra of all the states of knowledge induced by any designated game is a pseudocomplemented lattice. In particular, its join semilattice reduct is embeddable into the corresponding reduct of the Boolean algebra 2N1, where N is the cardinality of the search space.File | Dimensione | Formato | |
---|---|---|---|
15 DB Ulam.pdf
Solo gestori archivio
Dimensione
399.72 kB
Formato
Adobe PDF
|
399.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.