The problem of assessing the short and long time effects of stochastic fluctuations on the global-nonlinear dynamics of a class of closed-loop continuous exothermic reactors with temperature control and mono or bistable isothermal dynamics is addressed. The consideration of the problem within a Fokker-Planck (FP) stochastic framework yields: (i) the characterization of the global-nonlinear stochastic dynamics, and (ii) the connection between the deterministic and stochastic modeling approaches. The evolution of the state probability density function (PDF) is explained as the result of a complex interplay between deterministic dynamical features, initial PDF shape, and noise intensity. The correspondence between stationary PDF mono (or bi) modality and deterministic mono (or bi) stability is established, and the stochastic settling time is put in perspective with the deterministic, noise-diffusion, and escape times. The conditions for the occurrence of a retarded response, with respect to deterministic and noise-diffusion times, are identified. The proposed approach: (i) is illustrated with representative case class example, and (ii) constitutes an inductive step towards the development of a general-purpose stochastic modeling approach in chemical process systems engineering.

On the global nonlinear stochastic dynamical behavior of a class of exothermic CSTRs

TRONCI, STEFANIA;GROSSO, MASSIMILIANO;BARATTI, ROBERTO
2011-01-01

Abstract

The problem of assessing the short and long time effects of stochastic fluctuations on the global-nonlinear dynamics of a class of closed-loop continuous exothermic reactors with temperature control and mono or bistable isothermal dynamics is addressed. The consideration of the problem within a Fokker-Planck (FP) stochastic framework yields: (i) the characterization of the global-nonlinear stochastic dynamics, and (ii) the connection between the deterministic and stochastic modeling approaches. The evolution of the state probability density function (PDF) is explained as the result of a complex interplay between deterministic dynamical features, initial PDF shape, and noise intensity. The correspondence between stationary PDF mono (or bi) modality and deterministic mono (or bi) stability is established, and the stochastic settling time is put in perspective with the deterministic, noise-diffusion, and escape times. The conditions for the occurrence of a retarded response, with respect to deterministic and noise-diffusion times, are identified. The proposed approach: (i) is illustrated with representative case class example, and (ii) constitutes an inductive step towards the development of a general-purpose stochastic modeling approach in chemical process systems engineering.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/102816
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact