The possibility of improving the efficacy of resveratrol, a polyphenol with strong antioxidant and free-radical scavenging properties, on cell proliferation and photoprotection by liposomal incorporation was investigated. Oligolamellar vesicles of different lipid compositions, loaded with resveratrol, were prepared and characterized by evaluating size, zeta potential, incorporation efficiency, electron microscopy and stability over 60 days. The effect of free and liposomal resveratrol on the viability of HEK 293 cells and their photoprotection after UV-B irradiation was assessed by the MTS method. Resveratrol decreased the cell viability at 100microM concentration, while at 10microM increased cell proliferation and also achieved the most effective photoprotection. Photomicrographs of the treated cells from inverted light and fluorescence microscopy demonstrated resveratrol effectiveness at 10microM, as well as its toxicity at higher concentrations, based on changes in cell shape, detachment and apoptotic features. Interestingly, liposomes prevented the cytotoxicity of resveratrol at high concentrations, even at 100microM, avoiding its immediate and massive intracellular distribution, and increased the ability of resveratrol to stimulate the proliferation of the cells and their ability to survive under stress conditions caused by UV-B light.
Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells
CADDEO, CARLA;SINICO, CHIARA;
2008-01-01
Abstract
The possibility of improving the efficacy of resveratrol, a polyphenol with strong antioxidant and free-radical scavenging properties, on cell proliferation and photoprotection by liposomal incorporation was investigated. Oligolamellar vesicles of different lipid compositions, loaded with resveratrol, were prepared and characterized by evaluating size, zeta potential, incorporation efficiency, electron microscopy and stability over 60 days. The effect of free and liposomal resveratrol on the viability of HEK 293 cells and their photoprotection after UV-B irradiation was assessed by the MTS method. Resveratrol decreased the cell viability at 100microM concentration, while at 10microM increased cell proliferation and also achieved the most effective photoprotection. Photomicrographs of the treated cells from inverted light and fluorescence microscopy demonstrated resveratrol effectiveness at 10microM, as well as its toxicity at higher concentrations, based on changes in cell shape, detachment and apoptotic features. Interestingly, liposomes prevented the cytotoxicity of resveratrol at high concentrations, even at 100microM, avoiding its immediate and massive intracellular distribution, and increased the ability of resveratrol to stimulate the proliferation of the cells and their ability to survive under stress conditions caused by UV-B light.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.