About a century of exploitation of the galena-arsenopyrite deposit of Baccu Locci in Sardinia (Italy) has caused a severe, persistent arsenic contamination that extends downstream from the mine for several kilometres. Differently from As, the contamination of lead in surface waters is only localised in the upper part of the mine despite very high Pb concentrations in geologic materials (waste rocks, tailings, stream sediments, soils) over the whole Baccu Locci stream catchment The aqueous and solid speciation of Pb in various environmental media of the Baccu Locci system was determined by means of a combined analytical (ICP-MS, SEM-EDX, TEM-EDX, chemical extraction) and thermodynamic approach (PHREEQC). The study has pointed out that relatively little Ph (up to 30 mu g/L) is initially released to surface waters (pH = 7-8, Eh = 0.4-0.6 V) very rapidly due to dissolution of anglesite that is the first product of galena oxidation. Subsequently, Pb is removed (down to 0.6 mu g/L) by probable sorption onto hydrous ferric oxides (e.g. ferrihydrite) and/or possible precipitation of As-containing plumbojarosite that is the main secondary Pb-bearing phase in stream sediments/tailings along the Baccu Locci stream course, The latter hypothesis is controversial since it is reported from the literature that plumbojarosite is formed under acidic conditions, although there is contrary field evidence as well. Bearing in mind the uncertainties introduced from thermodynamic and analytical data, the solubility calculations indicate strong undersaturation of surface waters with respect to plumbojarosite (SI: -19.9 to -3.7). On the contrary arsenatian plumbojarosite is at or close to saturation (SI: -0.6 to 3.2) in most surface waters and beudantite is clearly above saturation (SI: 4.1 to 12.7). This suggests that the incorporation of As might increase the stability of plumbojarosite, extending it up to near-neutral conditions. As a consequence, Pb is prevented from being released downstream to surface waters, and dissolved Pb concentrations remain definitely below the Italian and WHO limits for drinking waters (50 mu g/L and 10 mu g/L, respectively).

Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia, Italy)

FRAU, FRANCO;ARDAU, CARLA;
2009-01-01

Abstract

About a century of exploitation of the galena-arsenopyrite deposit of Baccu Locci in Sardinia (Italy) has caused a severe, persistent arsenic contamination that extends downstream from the mine for several kilometres. Differently from As, the contamination of lead in surface waters is only localised in the upper part of the mine despite very high Pb concentrations in geologic materials (waste rocks, tailings, stream sediments, soils) over the whole Baccu Locci stream catchment The aqueous and solid speciation of Pb in various environmental media of the Baccu Locci system was determined by means of a combined analytical (ICP-MS, SEM-EDX, TEM-EDX, chemical extraction) and thermodynamic approach (PHREEQC). The study has pointed out that relatively little Ph (up to 30 mu g/L) is initially released to surface waters (pH = 7-8, Eh = 0.4-0.6 V) very rapidly due to dissolution of anglesite that is the first product of galena oxidation. Subsequently, Pb is removed (down to 0.6 mu g/L) by probable sorption onto hydrous ferric oxides (e.g. ferrihydrite) and/or possible precipitation of As-containing plumbojarosite that is the main secondary Pb-bearing phase in stream sediments/tailings along the Baccu Locci stream course, The latter hypothesis is controversial since it is reported from the literature that plumbojarosite is formed under acidic conditions, although there is contrary field evidence as well. Bearing in mind the uncertainties introduced from thermodynamic and analytical data, the solubility calculations indicate strong undersaturation of surface waters with respect to plumbojarosite (SI: -19.9 to -3.7). On the contrary arsenatian plumbojarosite is at or close to saturation (SI: -0.6 to 3.2) in most surface waters and beudantite is clearly above saturation (SI: 4.1 to 12.7). This suggests that the incorporation of As might increase the stability of plumbojarosite, extending it up to near-neutral conditions. As a consequence, Pb is prevented from being released downstream to surface waters, and dissolved Pb concentrations remain definitely below the Italian and WHO limits for drinking waters (50 mu g/L and 10 mu g/L, respectively).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/103167
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 51
  • ???jsp.display-item.citation.isi??? 48
social impact