The serotonin system has emerged as a potential target for anti-dyskinetic therapy in Parkinson's disease. In fact, serotonin neurons can convert L-DOPA into dopamine, and mediate its synaptic release. However, they lack a feedback control mechanism able to regulate synaptic dopamine levels, which leads to un-physiological stimulation of post-synaptic striatal dopamine receptors. Accordingly, drugs able to dampen the activity of serotonin neurons can suppress L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Here, we investigated the ability of the 5-HT1A/1B receptor agonist anpirtoline to counteract L-DOPA-induced dyskinesia in L-DOPA-primed 6-OHDA-lesioned rats and MPTP-treated macaques. Results suggest that anpirtoline dose-dependently reduced dyskinesia both in rats and monkeys; however, the effect in MPTP-treated macaques was accompanied by a worsening of the Parkinson's disease score at significantly effective doses (1.5 and 2.0mg/kg). At a lower dose (0.75mg/kg), anpirtoline markedly reduced dyskinesia in 4 out of 5 subjects, but statistical significance was prevented by the presence of a non-responsive subject. These results provide further evidence that the serotonin neurons contribute both to the pro-dyskinetic effect of L-DOPA and to its therapeutic efficacy in the rat and monkey models of Parkinson's disease.
Anti-dyskinetic effect of anpirtoline in animal models of L-DOPA-induced dyskinesia
TRONCI, ELISABETTA;CARTA, MANOLO
2013-01-01
Abstract
The serotonin system has emerged as a potential target for anti-dyskinetic therapy in Parkinson's disease. In fact, serotonin neurons can convert L-DOPA into dopamine, and mediate its synaptic release. However, they lack a feedback control mechanism able to regulate synaptic dopamine levels, which leads to un-physiological stimulation of post-synaptic striatal dopamine receptors. Accordingly, drugs able to dampen the activity of serotonin neurons can suppress L-DOPA-induced dyskinesia in animal models of Parkinson's disease. Here, we investigated the ability of the 5-HT1A/1B receptor agonist anpirtoline to counteract L-DOPA-induced dyskinesia in L-DOPA-primed 6-OHDA-lesioned rats and MPTP-treated macaques. Results suggest that anpirtoline dose-dependently reduced dyskinesia both in rats and monkeys; however, the effect in MPTP-treated macaques was accompanied by a worsening of the Parkinson's disease score at significantly effective doses (1.5 and 2.0mg/kg). At a lower dose (0.75mg/kg), anpirtoline markedly reduced dyskinesia in 4 out of 5 subjects, but statistical significance was prevented by the presence of a non-responsive subject. These results provide further evidence that the serotonin neurons contribute both to the pro-dyskinetic effect of L-DOPA and to its therapeutic efficacy in the rat and monkey models of Parkinson's disease.File | Dimensione | Formato | |
---|---|---|---|
Bezard et al_NR 2013.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
829.19 kB
Formato
Adobe PDF
|
829.19 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.