Adenosine A2A receptor antagonists are one of the most attractive classes of drug for the treatment of Parkinson's disease (PD) as they are effective in counteracting motor dysfunctions and display neuroprotective and anti-inflammatory effects in animal models of PD. In this study, we evaluated the neuroprotective and anti-inflammatory properties of the adenosine A2A receptor antagonist ST1535 in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. C57BL/6J mice were repeatedly administered with vehicle, MPTP (20 mg/kg), or MPTP + ST1535 (2 mg/kg). Mice were sacrificed three days after the last administration of MPTP. Immunohistochemistry for tyrosine hydroxylase (TH) and cresyl violet staining were employed to evaluate dopaminergic neuron degeneration in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu). CD11b and glial fibrillary acidic protein (GFAP) immunoreactivity were, respectively, evaluated as markers of microglial and astroglial response in the SNc and CPu. Stereological analysis for TH revealed a 32% loss of dopaminergic neurons in the SNc after repeated MPTP administration, which was completely prevented by ST1535 coadministration. Similarly, CPu decrease in TH (25%) was prevented by ST1535. MPTP treatment induced an intense gliosis in both the SNc and CPu. ST1535 totally prevented CD11b immunoreactivity in both analyzed areas, but only partially blocked GFAP increase in the SNc and CPu. A2A receptor antagonism is a new opportunity for improving symptomatic PD treatment. With its neuroprotective effect on dopaminergic neuron toxicity induced by MPTP and its antagonism on glial activation, ST1535 represents a new prospect for a disease-modifying drug

Neuroprotective and anti-inflammatory effects of the adenosine A(2A) receptor antagonist ST1535 in a MPTP mouse model of Parkinson's disease.

FRAU, LUCIA;MORELLI, MICAELA
2011-01-01

Abstract

Adenosine A2A receptor antagonists are one of the most attractive classes of drug for the treatment of Parkinson's disease (PD) as they are effective in counteracting motor dysfunctions and display neuroprotective and anti-inflammatory effects in animal models of PD. In this study, we evaluated the neuroprotective and anti-inflammatory properties of the adenosine A2A receptor antagonist ST1535 in a subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. C57BL/6J mice were repeatedly administered with vehicle, MPTP (20 mg/kg), or MPTP + ST1535 (2 mg/kg). Mice were sacrificed three days after the last administration of MPTP. Immunohistochemistry for tyrosine hydroxylase (TH) and cresyl violet staining were employed to evaluate dopaminergic neuron degeneration in the substantia nigra pars compacta (SNc) and caudate-putamen (CPu). CD11b and glial fibrillary acidic protein (GFAP) immunoreactivity were, respectively, evaluated as markers of microglial and astroglial response in the SNc and CPu. Stereological analysis for TH revealed a 32% loss of dopaminergic neurons in the SNc after repeated MPTP administration, which was completely prevented by ST1535 coadministration. Similarly, CPu decrease in TH (25%) was prevented by ST1535. MPTP treatment induced an intense gliosis in both the SNc and CPu. ST1535 totally prevented CD11b immunoreactivity in both analyzed areas, but only partially blocked GFAP increase in the SNc and CPu. A2A receptor antagonism is a new opportunity for improving symptomatic PD treatment. With its neuroprotective effect on dopaminergic neuron toxicity induced by MPTP and its antagonism on glial activation, ST1535 represents a new prospect for a disease-modifying drug
2011
TH; dopamine; neuron degeneration; CD11b; GFAP ;striatum; substantia nigra compacta
File in questo prodotto:
File Dimensione Formato  
Frau et al., 2011 Synapse.pdf

Solo gestori archivio

Dimensione 492.71 kB
Formato Adobe PDF
492.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/103669
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact