The heavy metal bioavailable fraction of a soil is a core parameter to verify the potential risks of contaminant exposure to organisms or plants. The purpose of the present work is to identify the bioavailable metal fraction in soils treated with chelates. This fraction was evaluated directly by analyzing metal concentrations in soil solution and indirectly using sequential extraction procedures. The metal bioavailable fraction was compared with metal accumulated in plant leaves, grown in both untreated and chelatetreated reactors. In order to verify the eVect of the readily and slowly biodegradable chelates [S,S]-ethylenediaminedisuccinic acid (EDDS), methylglycine diacetic acid (MGDA), and ethylenediaminetetraacetic acid (EDTA) on metal speciation in soils, a simulation of chelate treatment was made and metal concentrations in diVerent soil compartments before and after the simulation were compared. Lead concentration in the soil solution was positively correlated with metal concentration in the test plants. The soluble fraction showed the best correlation with metal concentration in soil solution. The simulation of the chelate treatment demonstrated that EDTA and EDDS were able to extract part of the organic- and sulWde-bound fraction, which are less available to plants.
Heavy metal bioavailability and chelate mobilization efficiency in an assisted phytoextraction process
CAPPAI, GIOVANNA SALVATORICA;CARUCCI, ALESSANDRA;LAI, TIZIANA
2008-01-01
Abstract
The heavy metal bioavailable fraction of a soil is a core parameter to verify the potential risks of contaminant exposure to organisms or plants. The purpose of the present work is to identify the bioavailable metal fraction in soils treated with chelates. This fraction was evaluated directly by analyzing metal concentrations in soil solution and indirectly using sequential extraction procedures. The metal bioavailable fraction was compared with metal accumulated in plant leaves, grown in both untreated and chelatetreated reactors. In order to verify the eVect of the readily and slowly biodegradable chelates [S,S]-ethylenediaminedisuccinic acid (EDDS), methylglycine diacetic acid (MGDA), and ethylenediaminetetraacetic acid (EDTA) on metal speciation in soils, a simulation of chelate treatment was made and metal concentrations in diVerent soil compartments before and after the simulation were compared. Lead concentration in the soil solution was positively correlated with metal concentration in the test plants. The soluble fraction showed the best correlation with metal concentration in soil solution. The simulation of the chelate treatment demonstrated that EDTA and EDDS were able to extract part of the organic- and sulWde-bound fraction, which are less available to plants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.