After binding to its receptor and activating the β-subunit, insulin is faced with two divergent pathways: one is phosphatidylinositol 3-kinase (PI 3-K) dependent, while another is dependent upon activation of mitogen-activated protein kinase (MAP-K). The former is absolutely necessary for mediating most metabolic and antiapoptotic effects; the latter is linked to nonmetabolic, proliferative and mitogenic effects. In obese patients, especially with type 2 diabetes mellitus (DM2), only the PI 3-K, but not the MAP-K, is resistant to insulin stimulation: hence insulin resistance is better defined as metabolic insulin resistance. The resulting 'compensatory hyperinsulinemia' is an unsuccessful attempt to overcome the inhibition of the metabolic pathway at the price of unopposed stimulation of the MAP-K pathway, and the administration of exogenous insulin might worsen the metabolic dysfunction. As the preferential activation of the MAP-K pathway in insulin-resistant patients has atherogenic and mitogenic properties, this leads to atherosclerosis and cancer. Metformin may carry out direct protective action on human β cells, inasmuch as it improves both primary and secondary endpoints through selective inhibition of fatty acyl oxidation.

Insulin Resistance: pathophysiology and rationale for treatment

MUNTONI, SANDRO;
2011-01-01

Abstract

After binding to its receptor and activating the β-subunit, insulin is faced with two divergent pathways: one is phosphatidylinositol 3-kinase (PI 3-K) dependent, while another is dependent upon activation of mitogen-activated protein kinase (MAP-K). The former is absolutely necessary for mediating most metabolic and antiapoptotic effects; the latter is linked to nonmetabolic, proliferative and mitogenic effects. In obese patients, especially with type 2 diabetes mellitus (DM2), only the PI 3-K, but not the MAP-K, is resistant to insulin stimulation: hence insulin resistance is better defined as metabolic insulin resistance. The resulting 'compensatory hyperinsulinemia' is an unsuccessful attempt to overcome the inhibition of the metabolic pathway at the price of unopposed stimulation of the MAP-K pathway, and the administration of exogenous insulin might worsen the metabolic dysfunction. As the preferential activation of the MAP-K pathway in insulin-resistant patients has atherogenic and mitogenic properties, this leads to atherosclerosis and cancer. Metformin may carry out direct protective action on human β cells, inasmuch as it improves both primary and secondary endpoints through selective inhibition of fatty acyl oxidation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/105848
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 21
social impact