When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints of differences in the broad emission line spectral shape are seen. On the other hand, they are dramatically important for the centroid energy of the absorption lines. In particular, the RDPHA corrections provide a better estimate of the spectral properties of these features than the RDCTI corrections. Indeed the discrete features observed in the data, applying the former method, are physically more consistent with those already found in other Chandra and XMM-Newton observations of GX 13+1.
Testing rate-dependent corrections on timing mode EPIC-pn spectra of the accreting neutron star GX 13+1
PINTORE, FABIO;SANNA, ANDREA;RIGGIO, ALESSANDRO;BURDERI, LUCIANO;
2014-01-01
Abstract
When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints of differences in the broad emission line spectral shape are seen. On the other hand, they are dramatically important for the centroid energy of the absorption lines. In particular, the RDPHA corrections provide a better estimate of the spectral properties of these features than the RDCTI corrections. Indeed the discrete features observed in the data, applying the former method, are physically more consistent with those already found in other Chandra and XMM-Newton observations of GX 13+1.File | Dimensione | Formato | |
---|---|---|---|
pintore2014.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
658 kB
Formato
Adobe PDF
|
658 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.