We deal with the Cauchy problem associated to a class of quasilinear singular parabolic equations with L∞ coefficients whose prototypes are the p-Laplacian (2N/(N + 1) < p < 2) and the porous medium equation (((N - 2)/N)+ < m < 1). We prove existence of and sharp pointwise estimates from above and from below for the fundamental solutions. Our results can be extended to general non-negative L1 initia

Pointwise estimates for the fundamental solutions of a class of singular parabolic problems

RAGNEDDA, FRANCESCO;PIRO, STELLA;
2013

Abstract

We deal with the Cauchy problem associated to a class of quasilinear singular parabolic equations with L∞ coefficients whose prototypes are the p-Laplacian (2N/(N + 1) < p < 2) and the porous medium equation (((N - 2)/N)+ < m < 1). We prove existence of and sharp pointwise estimates from above and from below for the fundamental solutions. Our results can be extended to general non-negative L1 initia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/107676
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact