We describe a fast solver for linear systems with reconstructible Cauchy-like structure, which requires O(rn2) floating point operations and O(rn) memory locations, where n is the size of the matrix and r its displacement rank. The solver is based on the application of the generalized Schur algorithm to a suitable augmented matrix, under some assumptions on the knots of the Cauchy-like matrix. It includes various pivoting strategies, already discussed in the literature, and a new algorithm, which only requires reconstructibility. We have developed a software package, written inMatlab and C-MEX, which provides a robust implementation of the above method. Our package also includes solvers for Toeplitz(+Hankel)-like and Vandermonde-like linear systems, as these structures can be reduced to Cauchy-like by fast and stable transforms. Numerical experiments demonstrate the effectiveness of the software.
A fast solver for linear systems with displacement structure
RODRIGUEZ, GIUSEPPE
2010-01-01
Abstract
We describe a fast solver for linear systems with reconstructible Cauchy-like structure, which requires O(rn2) floating point operations and O(rn) memory locations, where n is the size of the matrix and r its displacement rank. The solver is based on the application of the generalized Schur algorithm to a suitable augmented matrix, under some assumptions on the knots of the Cauchy-like matrix. It includes various pivoting strategies, already discussed in the literature, and a new algorithm, which only requires reconstructibility. We have developed a software package, written inMatlab and C-MEX, which provides a robust implementation of the above method. Our package also includes solvers for Toeplitz(+Hankel)-like and Vandermonde-like linear systems, as these structures can be reduced to Cauchy-like by fast and stable transforms. Numerical experiments demonstrate the effectiveness of the software.File | Dimensione | Formato | |
---|---|---|---|
drsolve10.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
590.86 kB
Formato
Adobe PDF
|
590.86 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.