This paper presents a recently introduced Kernel Machine, called Geometrical Kernel Machine, used to predict disruptive events in nuclear fusion reactors. The algorithm proposed to construct the Kernel Machine is able to automatically determine both the number of neurons and the synaptic weights of a Multilayer Perceptron neural network with a single hidden layer. It has been demonstrated that the resulting network is able to classify any finite set of patterns defined in a real domain. The prediction problem has been here modeled as a two classes classification problem. The geometrical interpretation of the network equations allows us both to develop the disruption predictor and to manage the so called ageing of the kernel machine. In fact, using the same kernel machine, a novelty detection system has been integrated in the predictor, increasing the overall system performance, and the reliability of the predictor.

Geometrical Kernel Machine for Prediction and Novelty Detection of Disruptive Events in TOKAMAK Machines

CANNAS, BARBARA;FANNI, ALESSANDRA;MONTISCI, AUGUSTO;
2010-01-01

Abstract

This paper presents a recently introduced Kernel Machine, called Geometrical Kernel Machine, used to predict disruptive events in nuclear fusion reactors. The algorithm proposed to construct the Kernel Machine is able to automatically determine both the number of neurons and the synaptic weights of a Multilayer Perceptron neural network with a single hidden layer. It has been demonstrated that the resulting network is able to classify any finite set of patterns defined in a real domain. The prediction problem has been here modeled as a two classes classification problem. The geometrical interpretation of the network equations allows us both to develop the disruption predictor and to manage the so called ageing of the kernel machine. In fact, using the same kernel machine, a novelty detection system has been integrated in the predictor, increasing the overall system performance, and the reliability of the predictor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/108013
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact