This paper is concerned with minimization and maximization problems of eigenvalues. The principal eigenvalue of a differential operator is minimized or maximized over a set which is formed by intersecting a rearrangement class with an affine subspace of finite co-dimension. A solution represents an optimal design of a 2-dimensional composite membrane Ω, fixed at the boundary, built out of two different materials, where certain prescribed regions (patches) in Ω are occupied by both materials. We prove existence results, and present some features of optimal solutions. The special case of one patch is treated in detail.

Design of a composite membrane with patches

CUCCU, FABRIZIO;
2010-01-01

Abstract

This paper is concerned with minimization and maximization problems of eigenvalues. The principal eigenvalue of a differential operator is minimized or maximized over a set which is formed by intersecting a rearrangement class with an affine subspace of finite co-dimension. A solution represents an optimal design of a 2-dimensional composite membrane Ω, fixed at the boundary, built out of two different materials, where certain prescribed regions (patches) in Ω are occupied by both materials. We prove existence results, and present some features of optimal solutions. The special case of one patch is treated in detail.
File in questo prodotto:
File Dimensione Formato  
CuEmPo(AMO).pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 306 kB
Formato Adobe PDF
306 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/108258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact