Neural networks are trained to evaluate the risk of plasma disruptions in a tokamak experiment using several diagnostic signals as inputs. A saliency analysis confirms the goodness of the chosen inputs, all of which contribute to the network performance. Tests that were carried out refer to data collected from succesfully terminated and disruption terminated pulses performed during two years of JET tokamak experiments. Results show the possibility of developing a neural network predictor that intervenes well in advance in order to avoid plasma disruption or mitigate its effects.

Disruption forecasting at JET using neural networks

CANNAS, BARBARA;FANNI, ALESSANDRA;
2004-01-01

Abstract

Neural networks are trained to evaluate the risk of plasma disruptions in a tokamak experiment using several diagnostic signals as inputs. A saliency analysis confirms the goodness of the chosen inputs, all of which contribute to the network performance. Tests that were carried out refer to data collected from succesfully terminated and disruption terminated pulses performed during two years of JET tokamak experiments. Results show the possibility of developing a neural network predictor that intervenes well in advance in order to avoid plasma disruption or mitigate its effects.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/108329
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 71
social impact