The cytotoxic properties of copper(II) complexes with 1,10-phenanthroline (phen) can be modified by substitution in the phen backbone. For this purpose, Cu(II) complexes with phen, 1,10-phenanthrolin-5,6-dione (phendione) and 1,10-phenanthrolin-5,6-diol (phendiol) have been synthesized and characterised. The crystal structure of [Cu(phendione)2(OH2)(OClO3)](ClO4) is discussed. The complex formation equilibria between Cu(II) and phen or phendione were studied by potentiometric measurements at 25 and 37 °C in 0.1 M ionic strength (NaCl). The antitumour activity of the compounds has been tested in vitro against a panel of tumour (DU-145, HEP-G2, SK-MES-1, CCRF-CEM, CCRF-SB) and normal (CRL-7065) human cell lines. The studied compounds generally present an antiproliferative effect greater than that of cisplatin. The phen and phendione ligands present similar antiproliferative effect against all the tested cells. Phendiol presents an antiproliferative effect 1.3 to 18 times greater than that of phen or phendione for leukemic, lung, prostatic and fibroblast cells, while it presents less activity towards hepatic cells. Complexes with two ligands are more cytotoxic towards all the tested cell lines than complexes with one ligand and are generally more cytotoxic than the ligand alone. Complexes [Cu(phendiol)2(OH2)](ClO4)2 and [Cu(phendione)2(OH2)(OClO3)](ClO4) appear to be the most active compounds for the treatment of SK-MES-1 and HEP-G2 cells, respectively, being at least 18 times more cytotoxic than cisplatin. The studied Cu(II) complexes are characterized by a strong DNA affinity and were found to interact with DNA mainly by groove binding or electrostatic interactions. The complexes appear to act on cells with a mechanism different from that of cisplatin.

Novel copper(II) complexes as new promising antitumour agents. A crystal structure of [Cu(1,10-phenanthroline-5,6-dione)2(OH2)(OClO3)](ClO4)

PIVETTA, TIZIANA;TRUDU, FEDERICA;ISAIA, FRANCESCO;TUVERI, ROSSANA;VASCELLARI, SARAH;PANI, ALESSANDRA
2014-01-01

Abstract

The cytotoxic properties of copper(II) complexes with 1,10-phenanthroline (phen) can be modified by substitution in the phen backbone. For this purpose, Cu(II) complexes with phen, 1,10-phenanthrolin-5,6-dione (phendione) and 1,10-phenanthrolin-5,6-diol (phendiol) have been synthesized and characterised. The crystal structure of [Cu(phendione)2(OH2)(OClO3)](ClO4) is discussed. The complex formation equilibria between Cu(II) and phen or phendione were studied by potentiometric measurements at 25 and 37 °C in 0.1 M ionic strength (NaCl). The antitumour activity of the compounds has been tested in vitro against a panel of tumour (DU-145, HEP-G2, SK-MES-1, CCRF-CEM, CCRF-SB) and normal (CRL-7065) human cell lines. The studied compounds generally present an antiproliferative effect greater than that of cisplatin. The phen and phendione ligands present similar antiproliferative effect against all the tested cells. Phendiol presents an antiproliferative effect 1.3 to 18 times greater than that of phen or phendione for leukemic, lung, prostatic and fibroblast cells, while it presents less activity towards hepatic cells. Complexes with two ligands are more cytotoxic towards all the tested cell lines than complexes with one ligand and are generally more cytotoxic than the ligand alone. Complexes [Cu(phendiol)2(OH2)](ClO4)2 and [Cu(phendione)2(OH2)(OClO3)](ClO4) appear to be the most active compounds for the treatment of SK-MES-1 and HEP-G2 cells, respectively, being at least 18 times more cytotoxic than cisplatin. The studied Cu(II) complexes are characterized by a strong DNA affinity and were found to interact with DNA mainly by groove binding or electrostatic interactions. The complexes appear to act on cells with a mechanism different from that of cisplatin.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/108494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 30
social impact