An original approach to the optimization of electromagnetic structures is presented that makes use of a neural network trained to capture the functional relationship between the design parameters and the objective function. The algebraic structure of the network is used to find the basins of attraction of the objective function of the optimization problem, avoiding the major drawbacks of the commonly used algorithms, i.e., the entrapment in local minima, and/or the huge amount of cost function evaluations.

A neural inverse problem approach for optimal design

FANNI, ALESSANDRA;MONTISCI, AUGUSTO
2003-01-01

Abstract

An original approach to the optimization of electromagnetic structures is presented that makes use of a neural network trained to capture the functional relationship between the design parameters and the objective function. The algebraic structure of the network is used to find the basins of attraction of the objective function of the optimization problem, avoiding the major drawbacks of the commonly used algorithms, i.e., the entrapment in local minima, and/or the huge amount of cost function evaluations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/108771
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact