Zinc oxide/ and iron oxide/SBA-15 composites were synthesized using the innovative Two-Solvents procedure and tested as sorbents for the mid-temperature (300 C) removal of hydrogen sulphide, and then compared with a commercial unsupported ZnO sorbent. The sulphur retention capacity results showed the superior performance of the iron oxide/SBA-15 composite (401 mg S g1 Fe2O3) in comparison with the zinc oxide/SBA-15 composite (53 mg S g1 ZnO), both these sorbents being much more efficient than the commercial sorbent (6 mg S g1 ZnO). The different sorption behaviour was discussed in terms of the nature of the nanocomposites where: (i) the mesostructure of the support was retained with a high surface area and pore volume; (ii) the zinc oxide phase was incorporated inside the SBA-15 channels as a thin amorphous homogeneous layer while the iron oxide was dispersed in form of small maghemite crystallites; and (iii) significant interactions occurred between the silica matrix and the zinc oxide phase. Remarkable differences in the regeneration behaviour of the exhaust sorbents were revealed by temperature-programmed experiments under an oxidizing atmosphere. After regeneration, the sorption properties of the zinc oxide/SBA-15 composite appeared to be enhanced compared to the commercial sorbent. Incomplete recovery of the sorption activity was observed for the regenerated iron oxide/SBA-15 sorbent, whose performance remained far better than that of the ZnO-based one, either fresh or regenerated. In view of its higher sulphur retention capacity and appropriate regeneration temperature (T # 350 C), the iron oxide/SBA-15 composite is a promising material for the design of advanced sorbents for a thermally efficient H2S removal process from hot gas streams.

MeOx/SBA-15 (Me = Zn, Fe): highly efficient nanosorbents for mid-temperature H2S removal

FERINO, ITALO;MUSINU, ANNA MARIA GIOVANNA;ARDU, ANDREA;ROMBI, ELISABETTA;CUTRUFELLO, MARIA GIORGIA;FANTAUZZI, MARZIA;CANNAS, CARLA
2014-01-01

Abstract

Zinc oxide/ and iron oxide/SBA-15 composites were synthesized using the innovative Two-Solvents procedure and tested as sorbents for the mid-temperature (300 C) removal of hydrogen sulphide, and then compared with a commercial unsupported ZnO sorbent. The sulphur retention capacity results showed the superior performance of the iron oxide/SBA-15 composite (401 mg S g1 Fe2O3) in comparison with the zinc oxide/SBA-15 composite (53 mg S g1 ZnO), both these sorbents being much more efficient than the commercial sorbent (6 mg S g1 ZnO). The different sorption behaviour was discussed in terms of the nature of the nanocomposites where: (i) the mesostructure of the support was retained with a high surface area and pore volume; (ii) the zinc oxide phase was incorporated inside the SBA-15 channels as a thin amorphous homogeneous layer while the iron oxide was dispersed in form of small maghemite crystallites; and (iii) significant interactions occurred between the silica matrix and the zinc oxide phase. Remarkable differences in the regeneration behaviour of the exhaust sorbents were revealed by temperature-programmed experiments under an oxidizing atmosphere. After regeneration, the sorption properties of the zinc oxide/SBA-15 composite appeared to be enhanced compared to the commercial sorbent. Incomplete recovery of the sorption activity was observed for the regenerated iron oxide/SBA-15 sorbent, whose performance remained far better than that of the ZnO-based one, either fresh or regenerated. In view of its higher sulphur retention capacity and appropriate regeneration temperature (T # 350 C), the iron oxide/SBA-15 composite is a promising material for the design of advanced sorbents for a thermally efficient H2S removal process from hot gas streams.
File in questo prodotto:
File Dimensione Formato  
JMatChemA2014.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 886.82 kB
Formato Adobe PDF
886.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/108815
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 41
social impact